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Abstract

(R)-(�) (1) and (S )-(þ)-2-(30-Thienyl)ethyl N-(300,500-dinitrobenzoyl)-a-phenylglycinate (2) monomers were synthesized, characterized, and
polymerized in chloroform using FeCl3 as an oxidizing agent. Molecular weights of 2.6� 104 and 3.2� 104 for poly1 and poly2, respectively,
were determined by SEC analysis. FTIR spectra of the polymers indicated the coupling of monomers through the a positions. UVevis spectra
showed absorption bands at lmax¼ 226 and 423 nm for poly1 and poly2, ascribed to transitions of side groups and polythiophene backbone,
respectively. Poly1 and poly2 remained stable up to 210 �C. At higher temperatures, a two step weight loss degradation process was observed
for both polymers by TGA analysis. 1H NMR, in the presence of Eu(tfc)3, and optical rotation measurements indicate the chiral properties of the
monomers 1 ([a]D

28¼�76.2) and 2 ([a]D
28¼þ76.0), and the maintenance of chirality after polymerization (poly1 [a]D

28¼�29.0 and poly2
[a]D

28¼þ28.4, c¼ 2.5 in THF). According to scanning electron microscopic analysis, the polymers are highly porous.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The development in the field of conducting polymers, since
the first experiments with doped polyacetylene [1e3], is
remarkable. Conducting polymer properties have been largely
investigated in the last three decades, and a variety of materials
have emerged with potential practical applications such as
electrochromic devices [4,5], electromagnetic radiation shields
[6], light-emitting diodes [7] and gas sensors [8e10]. Research
on structural features [11], on electrochemical [12,13] and op-
tical properties [14], on new synthetic methodologies [15e18],
as well as on thin film formation [19,20], and other chemical
and physical aspects of these materials have been undertaken
and reported in the literature.
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Polythiophene and its derivatives are among the most ex-
tensively studied conducting polymers. Several methodologies
have been developed for the synthesis of new thiophene deriv-
atives bearing different functional groups. They have been
polymerized by different techniques and methodologies
[21e23] giving rise to polythiophenes having properties such
as solubility [24,25], self-doping capacity [26], and low band
gaps [27,28].

Recently, research on optically active polythiophenes,
substituted with stereogenic centers, has become of great inter-
est due to their potential application as materials for enantio-
selective electrodes and membranes [29,30].

Here, we report the synthesis and characterization of
poly[(R)-(�)-2-(30-thienyl)ethyl N-(300,500-dinitrobenzoyl)-a-
phenylglycinate] (poly1) and poly[(S )-(þ)-2-(30-thienyl)ethyl
N-(300,500-dinitrobenzoyl)-a-phenylglycinate] (poly2). The
monomers (R)-(�)-2-(30-thienyl)ethyl N-(300,500-dinitroben-
zoyl)-a-phenylglycinate (1) and (S )-(þ)-2-(30-thienyl)ethyl
N-(300,500-dinitrobenzoyl)-a-phenylglycinate (2) were obtained
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through 3-(20-iodoethyl)thiophene (3) nucleophilic substitu-
tion by (R)-(�) (4) or (S )-(þ)-N-(3,5-dinitrobenzoyl)-a-phe-
nylglycine (5) salts (basic medium), which are chiral
selectors successfully used in Pirkle’s stationary phases
[31,32], applied in HPLC enantioselective analysis.

2. Experimental

2.1. Materials and methods

All reagents were purchased from Aldrich and Acros and
used as received. The solvents, of analytical grade, were dried
by conventional procedures and distilled prior to use [33].

The NMR spectra were recorded in a Varian Unity Plus
equipment with frequency of 300 MHz for protons, in CDCl3
solutions. UVevis spectra were obtained in a PerkineElmer
lambda 6 spectrophotometer, in THF solutions. FTIR spectra
were obtained in a Bruker IFS66 spectrophotometer in KBr
pellets. Thermal analyses were performed in a Schimadzu
TGA50 thermobalance under air at a heating rate of
10 �C min�1. Optical rotation measurements were carried out
in a PerkineElmer 241 polarimeter, c¼ 2.5 in THF. Scanning
electron microscopy was performed in a JEOL 6360 equip-
ment. Elemental analysis determinations were performed in a
Carlo Erba equipment. A Q-TOF mass spectrometer
(Micromass, Manchester, UK) was used for fingerprinting
and ESIeMS analysis.

Average number and weight molecular weights (Mn, Mw)
were measured via size exclusion chromatography (SEC)
against polystyrene (PS) standards using two Polymer Labora-
tories PLGel 5 mm Mixed-C columns, a Shodex RI-71 RI
detector and a Shimadzu LC-10 AD pump, in THF, at 1.0 mL/
min flow rate.

2.2. Synthesis

(R)-(�) (4) and (S )-(þ)-N-(3,5-Dinitrobenzoyl)-a-phenyl-
glycine (5) [74927-72-3] were synthesized, according to
Pirkle’s method [34], slightly modified by Navarro et al.
[35], with yields of 88% and 91%, respectively.

3-(20-Bromoethyl)thiophene [570070-76-5] was synthesized
as described in the literature [36] with 62% yield (lit. 70%). 1H
NMR (CDCl3): 7.33 (m, 1H, thiophene ring); 7.12e7.03 (m, 2H,
thiophene ring); 3.61 (t, J¼ 7.5 Hz, 2H, CH2) and 3.26 ppm
(t, J¼ 7.5 Hz, 2H, CH2). 13C NMR (CDCl3): 138.82; 127.56;
125.53; 121.61; 33.50 and 33.20 ppm. FTIR (KBr): 3102
(nCH a); 3045 (nCH b); 2964 and 2857 (nCH2

) and 1275 cm�1

(nCH2Br).
3-(20-Iodoethyl)thiophene (3) [114896-65-0] was prepared

using a procedure slightly modified from that described in
the literature [37]: 60 mL of a KI (10.1 g, 61.1 mmol) acetone
solution was added to the crude 3-(20-bromoethyl)thiophene
(10.6 g, 55.5 mmol) obtained by the procedure described
above. The solution was stirred and refluxed overnight. The
reaction mixture was filtered and the resulting solution dis-
tilled under reduced pressure. Compound 3 (11.2 g,
47 mmol) was obtained in 85% yield (lit. 82%).
1H NMR (CDCl3): 7.33 (m, 1H, thiophene ring); 7.12e6.99
(m, 2H, thiophene ring); 3.39 (t, J¼ 6.9 Hz, 2H, CH2) and
3.27 ppm (t, J¼ 6.9 Hz, 2H, CH2). 13C NMR (CDCl3):
140.50; 127.55; 125.57; 121.26; 34,40 and 5.12 ppm. FTIR
(KBr): 3102 (nCH a); 3045 (nCH b); 2961 and 2826 (nCH2

)
and 1169 cm�1 (nCH2I).

(R)-(�) (1) or (S )-(þ)-2-(30-Thienyl)ethyl N-(300,500-dinitro-
benzoyl)-a-phenylglycinate (2): 3.5 g of 4 or 5 (10.0 mmol)
was added to 35 mL of dry CH3CN solution containing 3
(3.3 g, 13.8 mmol), followed by the addition of 2.1 g
(10.0 mmol) of proton-sponge� (1,8-bis(dimethylamino)naph-
thalene), and stirred at about 50 �C for 3 h. The mixture was
separated on a silica gel column (70e230 mesh) eluted with
hexane/ethyl acetate (8:2). The separated product was crystal-
lized from CHCl3/ether to give 51% (2.3 g, 5.0 mmol) of (R)-
(�) monomer 1 (mp. 157e159 �C), m/z 456 [MþH]þ or 49%
(2.2 g, 4.8 mmol) of (S )-(þ) monomer 2 (mp. 156e159 �C),
m/z 456 [MþH]þ.

1H NMR (CDCl3): 9.14 (t, J¼ 2.1 Hz, 1H aromatic); 8.95
(d, J¼ 2.1 Hz, 2H aromatics); 7.71 (d, J¼ 6.9 Hz, 1H, NH);
7.42e7.32 (m, 5H phenyl); 7.18 (t, J¼ 3.6 Hz, 1H thiophene
ring); 6.79 (d, J¼ 3.6 Hz, 2H thiophene ring); 5.75 (d,
J¼ 6.9 Hz, 1H, CH); 4.44 (m, 2H, CH2) and 2.96 ppm (m,
2H, CH2).

13C NMR (CDCl3): 170.48; 161.94; 148.51; 137.12;
136.79; 135.39; 129.17; 128.99; 127.95; 127.43; 127.36;
125.68; 121.77; 121.36; 66.14; 57.36 and 29.20 ppm.

FTIR (KBr): 3292 (nNH amide); 3110e3050 (nCH (a and b)

thiophene ring and nCH phenyl); 2946 and 2875 (nCH2
); 1742

(nC]O); 1658 (namide I); 1541 and 1345 (nNO2
) and 784 cm�1

(nCH (a) thiophene ring).
Anal. Calcd. for 1 C21H17N3O7S (455.44): C, 55.38; H,

3.76; N, 9.23; S, 7.04. Found: C, 55.26; H, 3.55; N, 9.03; S,
7.15. For 2: C, 55.09; H, 3.60; N, 9.04; S, 7.10.

Optical rotation: [a]D
28¼�76.2 for 1 and [a]D

28¼þ76.0 for
2, c¼ 2.5 in THF.

2.3. Polymerization of monomers 1 and 2

Poly[(R)-(�)-2-(30-thienyl)ethyl N-(300,500-dinitrobenzoyl)-
a-phenylglycinate] (poly1) and poly[(S )-(þ)-2-(30-thienyl)-
ethyl N-(300,500-dinitrobenzoyl)-a-phenylglycinate] (poly2): 1
or 2 (100 mg; 0.2 mmol) dissolved in dry CHCl3 (10 mL)
was added dropwise to an FeCl3 suspension (200 mg;
1.2 mmol) in 20 mL of dry CHCl3 under N2. The mixture
was stirred for 48 h at room temperature. The polymer was
then precipitated by the addition of CH3OH, filtered and puri-
fied by Soxhlet extraction with CH3OH. The purified polymer
was dried under vacuum for 12 h. A reddish brown solid was
obtained e 60 mg (60%) for poly1 and 70 mg (70%) for poly2.

FTIR (KBr): 3292 (nNH amide); 3110e3050 (nCH (a and b)

thiophene ring and nCH phenyl); 2946 and 2875 (nCH2
); 1742

(nC]O); 1658 (namide I); 1541 and 1345 (nNO2
).

Anal. found for poly1: C, 53.32; H, 3.24; N, 8.60; S, 6.87.
For poly2: C, 53.93; H, 3.25; N, 8.67; S, 6.96.

Optical rotation: [a]D
28¼�29.0 for poly1 and [a]D

28¼þ28.4
for poly2, c¼ 2.5 in THF.
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3. Results and discussion

Monomers 1 and 2, were synthesized in good yields, 51%
and 49% respectively, following procedures described in the
literature [34,35] (Scheme 1).

The 1H NMR spectrum of 1 is shown in Fig. 1A. A chiral
discrimination study of the enantiomers was done with the aid
of the shift reagent [tris-(3-trifluoromethylhydroxymethylene)-
(þ)-camphorate] europium(III), Eu(tfc)3 [35]. The spectrum
of the (R)-(�) enantiomer 1 in the presence of Eu(tfc)3

(Fig. 1B) showed a visible low field shifting of some specific
NO
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Scheme 1.
Fig. 1. 1H NMR spectra (CDCl3, 300 MHz) of 1 (A); 1 after addition of Eu(tfc)3 (B); mixture of 1 þ 2 in the presence of Eu(tfc)3 (C), followed by an increasing

amount of 2 (D).
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peaks: 8.95 (2H, nitroaromatic), 7.71 (1H, NH), 7.42e7.32
(2H, phenyl) and 5.75 (1H, CH). It was not observed the split-
ting of any peak. When the same experiment was performed in
a mixture of 1 and 2, it was observed the same behaviour, but
with the splitting of the amidic proton (NH) signal (Fig. 1C).
Addition of increasing amounts of the (S )-(þ) enantiomer 2
affects an increase of only one of the signals at 8.12 ppm
(Fig. 1D). Therefore, the absence of NH splitting signal for
1H NMR spectra of 1 or 2, in the presence of Eu(tfc)3, indi-
cates a certain optical purity of these compounds.

The monomers were polymerized by oxidative coupling
with FeCl3 in CHCl3 (Scheme 2). The products poly1 (60%)
and poly2 (70%) were obtained in good yields.

Polymer molecular weights obtained from SEC analysis
were Mw¼ 2.6� 104, Mn¼ 8.4� 103, with polydispersivity
index (Mw/Mn) of 3.1 for poly1; and Mw¼ 3.2� 104,
Mn¼ 8.6� 103, with polydispersivity index of 3.8 for poly2.

The FTIR spectra of the monomers (Fig. 2B) show charac-
teristic bands at 3292 cm�1, attributed to the NeH stretching
of the amide; in the range of 3110e3050 cm�1 attributed to
the stretching of CeH(a) and CeH(b) of the thiophene ring
and CeH of the phenyl group; at 2946 and 2875 cm�1 due
to the CH2 asymmetric and symmetric stretching, respectively;
at 1742 cm�1 due to the carbonyl group and at 1658 cm�1 due
to the amide groups; at 1541 and 1345 cm�1 due to the nitro
groups.

As expected, the band at 784 cm�1, attributed to CeH(a)
bending deformation of thiophene, is present in the spectra
of the monomers but disappears in the polymers spectra
(Fig. 2A), indicating polymerization through aea coupling.
The band due to CeH(a) stretching, which is also a diagnostic
band for polymer formation through aea coupling, cannot be
used for that purpose here, due various types of CeH aromatic
bonds present in the molecule [38,39].

Poly1 and poly2 exhibited identical UVevis spectra
(Fig. 3), with absorption bands at lmax¼ 226 and 423 nm, in
THF solution. The broad band with maximum at 423 nm is
due to the polymers pep* absorption indicating a conjugated
backbone with low coplanarity of the thiophene rings, as
expected for a polythiophene with bulky substituents. The
highest energy absorption at lmax¼ 226 nm is due to the nitro-
aromatic substituent groups in the main chain. In the monomers
(1 and 2), the nitroaromatic group absorption appears at
lmax¼ 248 nm.
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Scheme 2.
The thermogravimetric analysis (TGA) curves (not pre-
sented here) are very similar for both polymers. Two decom-
position steps are seen after a weight loss step of ca. 1%
which we attribute to the loss of residual solvent in the sam-
ples. The steps representing decomposition of the polymers
are detailed in Table 1.

For poly1, the first decomposition step begins at 245 �C and
goes to 443 �C with maximum weight loss at 326 �C. While
for poly2, these values are 210, 434 and 325 �C, respectively.
For both polymers, this step represents a weight loss of ca.
38%, which corresponds roughly to the mass percent of the
dinitrobenzoyl moiety. The second decomposition step begins
at 443 �C and goes to 946 �C, with maximum weight loss at
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676 �C, for poly1, and 435, 945, and 667 �C, respectively for
poly2. This step corresponds to further fragmentation of the
polymer including the main chain backbone. A residual
mass of 28% remains for poly1 and 30% for poly2, at 950 �C.

Optical activity is maintained after polymerization with
similar rotations for poly1 and poly2. The specific optical
rotation observed for poly1 was [a]D

28¼�29.0, and for
poly2 it was [a]D

28¼þ28.4, both with c¼ 2.5 in THF. The
optical rotation was also measured for a copolymer of 1 and
2, obtained using the same polymerization conditions as those
for the synthesis of poly1 and poly2, and a comonomer feed-
ing ratio of 1:1. The value obtained for this copolymer optical
rotation was [a]D

28¼�0.3 (c¼ 2.5 in THF).
Fig. 4 shows the SEM of the polymers. The images of

cross-sections revealed high porosity throughout the cross-

Table 1

Results of TGA analysis for poly1 and poly2, under air and heating rate of

10 �C min�1

Polymer Decomposition temperature (�C)

Ti
a Tmax

b Tf
c

Poly1 245 326 443

443 676 946

Poly2 210 325 434

435 667 945

a Initial temperature.
b Maximum temperature.
c Final temperature.

Fig. 4. SEM of the polymers. Top: poly2, 2000� magnification (scale bar,

10 mm); bottom: poly1 3000� magnification (scale bar 5 mm).
section with pores ranging in diameter from ca. 1 to 10 mm.
The surface was nonporous and uniform.

4. Conclusion

Enantiomerically pure thiophenes bearing optically active
substituent group (1 and 2), as evidenced by 1H NMR (shift
reagent) and polarimetric measurements, were polymerized
giving rise to optically active polythiophenes (poly1 and
poly2). The polymers are highly conjugated and present
absorption band (THF) in the UVevis region typical of
b-substituted thiophenes. SEM analysis showed highly porous
materials, while TGA indicated good thermal stability, up to
210 �C.
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